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Predictability of noise-controlled dynamics
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Abstract

Noise-controlled dynamics runs counter to usual intuition: the larger the noise the more regular the solutions. We present
numerical and analytical results for a set of three stochastic partial differential equations in one space dimension, motivated
by the intermittent destabilization of tall thin convection cells by horizontal shear. Time-series are predictable in the sense that
they follow limit cycles with a small variation in amplitude from cycle to cycle. Closer inspection reveals that the amplitude
is determined by very small amounts of noise. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose a collective variable extracted from a system obeying a stochastic partial differential equation shows
behavior that is ‘noisily periodic’: almost periodic with a small random difference in amplitude from cycle to cycle.
One would expect to proceed by looking for a Hopf bifurcation in a deterministic model, then adding noise to
produce a little variability. That is, one would expect the predictable part of the behavior to be deterministic and
the slight variability to be stochastic. We report on a system where the opposite is true, i.e., the mean form of the
time-dependent solutions is a function of the noise level, even when the latter is very small; the amplitude of the
variability from cycle to cycle is independent of the noise level. The phenomenon, called noise-controlled dynamics,
has been analysed in low-order models. Here we analyse a set of nonlinear stochasticpartial differential equations.
The particular example we shall chose is a set of model equations for the dynamics of convection cells subject to
shear, obtained as a truncation of the Boussinesq equations [1–4].

In noise-controlled dynamics [5–12], timescales and qualitative behaviors of solutions are controlled by tiny
amounts of additive noise. The phenomenon has been reported in a one-dimensional map [5], in repeated passage
through a saddle-node bifurcation [13], and in ordinary differential equations describing the resonant interaction
of wave modes [6,10], the intermittent destabilization of convection by shear [7,11], pulsating laser oscillations [9]
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and plane Poiseuille flow [14]. Numerical evidence for similar behavior has been found in a set of partial differential
equations describing the shear instability of thermohaline convection [8]. Recent experimental results exhibit the
phenomenon in a periodically modulated laser: a change of O(1) in the area of the hysteresis loop is produced by
tiny amounts of noise [12].

Although the phenomenon of noise-controlled dynamics is counterintuitive, its dynamics is predictable in the
following sense. Collective variables perform loops whose amplitude varies from cycle to cycle. For sufficiently large
noise, the simplest dynamics is found: successive maxima are drawn independently from a well-defined distribution.
We shall derive an explicit formula for this distribution. For smaller values of the noise level the dynamics passes
through a sequence of bifurcations that, as in many deterministic systems, can be understood from an approximate
one-dimensional map.

Time-series of systems undergoing noise-controlled dynamics exhibit the following characteristic: trajectories
spend most of their time in a ‘slow phase’, close to an invariant manifold, when variables measuring distance
perpendicular to the manifold are ‘slaved’. Slow phases are occasionally interrupted by short-lived ‘revolts’ of the
slave variables (fast phases) [15]. In the analysis of noise-controlled dynamics of this type, the most important
parameter isµ|logε|, whereε is the noise level and 1/µ is the (slow) timescale for the dynamics near the invariant
manifold. The scaling of the parameters is:

ε � √
µ � 1. (1)

In the spatially-extended system considered here, we show that the dynamics can be described in terms of the
parameter

α = L2

4π2
µ|logε|, (2)

whereL is the length of the spatial domain,µ is proportional to the difference between the Rayleigh number and
its critical value, andε is the noise magnitude.

The dynamics of a slow phase is analogous to that of a slow passage through a symmetry-breaking bifurcation.
There, time-dependence of the critical parameter produces a delay that is sensitive to noise. The characteristic delay
in such a dynamic bifurcation is

√
2µ|logε|, whereµ is the rate of change of the parameter [10,16–19]. Studies of

dynamic bifurcations in spatially extended systems revealed, in addition, a characteristic length scale controlled by
µ and logε [20–22].

2. Model equations: shear instability of convection

We first briefly outline the motivation for the model. The vertical velocity of a fluid in cellular convective motion
is a function of position that can be written

ω = A sin
2π

L
z cos 2πx, (3)

wherex andz are the scaled horizontal and vertical directions andL is the ratio of the height of a cell to its width.
The presence of shear means that there is a non-zero net horizontal velocityu at some values ofz; it can be modeled
by introducing the horizontal average ofu as a fieldC(z) and letting the amplitude in Eq. (3) also depend onz.
Now in an expansion in 1/L (tall thin rolls) assuming a small ratio of viscous to thermal diffusivity, the leading
order nonlinear interaction ofA(z) andC(z) produces another contribution to the vertical velocity,B(z), that gives
the rolls a tilted appearance [3]. To solve the dynamical problem with noise, we write the three fields as stochastic
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Fig. 1.Numerical bifurcation diagram. The noise level,ε, decreases from left to right. Each dot represents a turning point of the spatial average
of A. The parametersL = 3π andµ = 0.01 are fixed. The solid line, coincident with the upper envelope of the dots, is Eq. (18), the analytically
calculated maximum value ofaaat (0).

processes depending on space and time, satisfying the following set of three stochastic partial differential equations
(SPDEs):

∂tAt (z) = µAt(z) + ∂2
z At (z) − Ct(z)Bt (z), ∂tBt (z) = ∂2

z Bt (z) + Ct(z)At (z) + εηB(z, t),

∂tCt (z) = ∂2
z Ct (z) − At(z)∂

2
z Bt (z) + εηC(z, t). (4)

The two space–time white noises satisfy

〈ηB(z, t)ηB(z′, t ′)〉 = δ(z − z′)δ(t − t ′), 〈ηC(z, t)ηC(z′, t ′)〉 = δ(z − z′)δ(t − t ′),
〈ηB(z, t)ηC(z′, t ′)〉 = 0. (5)

Angled brackets denote ensemble means. These noises, and the partial derivatives, denoted by∂t and∂2
z , exist in

the sense of generalized functions.
The parameterµ in Eq. (4) is the scaled difference between the Reyleigh numberR (proportional to the temperature

difference between the top and the bottom of the fluid) and the threshold for the onset of convection. The physical
origin of the fieldsB(z) andC(z) requires that they be zero atz = 0 andz = L; the latter is one of the boundary
conditions we have used for Eq. (4). We find that different boundary conditions alter our conclusions quantitatively,
but not qualitatively. In what follows, we therefore restrict ourselves to periodic boundaries, plus the conditions∫ L

0 B(z) dz = 0 and
∫ L

0 C(z) dz = 0. A finite difference algorithm [20] with second-order time-stepping [16] was
used to generate numerical solutions of the SPDEs (4).

The characteristics of the noise-controlled dynamics of this system are summarized in Fig. 1. The solutions
consist of alternating slow and fast phases, and dynamics are simplest at relatively high noise levels. For long periods
|At(z)| is spatially uniform and slowly growing, whileBt(z) andCt(z) are everywhere small. This corresponds to
convection with growing amplitude. After a slow phase, there follows a short fast phase whenAt(z) is not spatially
homogeneous andBt(z) andCt(z) are of the same order of magnitude asAt(z). The latter phase corresponds to
temporary destruction of the convection pattern by shear. Fig. 1 is constructed as follows. At each timestep, we
calculate the spatial average ofA:
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Fig. 2. Trajectories ofaaat (0). Each graph is a time-series for the spatial average ofA. The noise level is highest in (a) and lowest in (e); the
parametersL = 3π andµ = 0.01 are fixed. The time axis isµt .

aaat (0) = 1

L

∫ L

0
At(z) dz, (6)

follow its evolution and record its turning points. Each dot in Fig. 1 is a value ofaaat (0) at a time wheṅaaat (0) = 0.
Random initial conditions are used, then turning points are recorded after a time O(µ−1). The parameterα is defined
in Eq. (2). The largerα is, the more complicated the solutions are (Fig. 1). Note thatα can be increased by increasing
the length of the domainL or bydecreasingthe noise levelε.

Fig. 2 shows the time trace ofaaat (0) for several values ofα. The simplest case (largest noise level) is displayed in
Fig. 2(a):aaat (0) does not change sign. (There are two distinct orbits of this type; one or the other is found at fixedα,
depending on the initial conditions.) In Fig. 2(b), alternate maxima ofaaat (0) have opposite signs. Fig. 2(c) shows a
the time-series after a period-doubling bifurcation. In Fig. 2(d) the behavior is chaotic; Fig. 2(e) is taken in a noisily
periodic window.

Before proceeding to a quantitative description of the dynamics, we describe in more detail the relatively simple
dynamics found at smallα. Let the Fourier coefficientsbbbt (k) andccct (k) be defined as follows:
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Fig. 3.Evolution of Fourier modes. The top graph is the spatial average ofAt (z). During the long slow phases it is the only mode with large
amplitude. A spike in thek = 1 Fourier modes ofBt (z) andCt (z) brings a slow phase to an end and inaugurates a short fast phase when other
modes come into play. The values of the parameters areL = 3π, µ = 0.01 andε = 10−11(α = 0.57).

Bt(z) = 1√
L

∞∑
k=1

bbbt (k) exp

(
ik

2π

L
z

)
+ c.c., Ct (z) = 1√

L

∞∑
k=1

ccct (k) exp

(
ik

2π

L
z

)
+ c.c. (7)

Eachbbbt (k) andccct (k) is a stochastic processes taking complex values. Fig. 3 shows the time trace of some of these
modes for a solution of the type shown in Fig. 2(b). For long periods,aaat (0) is the only mode with O(1) amplitude.
The slow growth in|aaat (0)| eventually produces a sudden increase in the amplitudes ofbbbt (1) andccct (1), initiating
a fast phase. During a fast phase, nonlinear feedback makesAAAt(z) inhomogeneous (aaat (2) 6= 0) and brings higher
modes into play, butaaat (0) is reduced very quickly and the slow phase is restored.

3. Calculation of density of maxima

The orbits in Figs. 2(a,b) will be described by calculating the density of the maxima of|aaat (0)|. These maxima mark
the boundary between a slow phase and the following fast phase. Successive maxima are independent, depending
only the realization of the noise in the slow phase leading up to it. This is the key to the simplification of the
dynamics produced by noise [6,7,10,11]. We shall calculate the density of maxima of|aaat (0)| as follows. The SPDEs
are reduced to a set of stochastic ordinary differential equations (ODEs) by taking a Fourier transform in space.
Using an approximation valid in the slow phase, we derive quantitatively accurate expressions for the statistics of
the noise-controlled orbits for smallα, and follow the bifurcations leading to incoherence in space and time asα is
increased.
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In the slow phase, whenaaat (0) is approximately spatially uniform, we can setAt(z) = aaat (0). Then the set of
SPDEs (4) reduces to the following set of stochastic ODEs [16,23] for the real quantityaaat (0) and the complex
processesbbbt (k), ccct k:

daaat (0) = µaaat (0)dt −
(

1

L

∞∑
k=1

(bbbt (k)∗ccct (k) + ccct (k)∗bbbt (k))

)
dt,

dbbbt (k) = (−κ2bbbt (k) + aaat (0)ccct (k))dt + 1√
2
εdwwwt(k),

dccct (k) = (−κ2ccct (k) + κ2aaat (0)bbbt (k))dt + 1√
2
εdvvvt (k), (8)

where

〈dwwwt(k)∗dwwwt ′(k
′)〉 = 〈dvvvt (k)∗dvvvt ′(k

′)〉 = 2δ(t − t ′)δ(k − k′)dt, (9)

and

κ2 =
(

2π

L
k

)2

for integer k. (10)

We make the substitutions

yyyk = 1√
2L

(
ccct (k)√

κ
+ bbbt (k)

√
κ

)
, zzzt (k) = 1√

2L

(
ccct (k)√

κ
− bbbt (k)

√
κ

)
,

ε̃ = ε
1

2

√
κ + 1

κ
L−1/2 (11)

to convert Eq. (8) to the more convenient set of equations

daaat (0) = µaaat (0)dt −
( ∞∑

k=1

(yyyt (k)∗yyyt (k) − zzzt (k)∗zzzt (k))

)
dt, dyyyt (k) = κ(−κ + aaat (0))yyyt (k) dt + ε̃dw̃wwt(k),

dzzzt (k) = −κ(κ + aaat (0))zzzt (k) dt + ε̃dṽvvt (k), (12)

where

〈dw̃wwt(k)∗dw̃wwt ′(k
′)〉 = 〈dṽvvt (k)∗dṽvvt ′(k

′)〉 = 2δ(t − t ′)δ(k − k′)dt.

If only a finite number of modesk is considered, Eqs. (12) are in the form studied in previous work on noise-controlled
dynamics [10,11]. The analysis proceeds as follows. First, exploiting the symmetry of (12) under

aaat (0) → −aaat (0), yyyt (k) ↔ zzzt (k), (13)

we restrict ourselves to slow phases withaaat (0) > 0. (Note that|yyyt (k)| grows exponentially foraaat (0) > κ). Since
yyyt (k) = O(ε) when|aaat (0)| passes throughκ from below, we can seṫaaat (0) = µaaat (0) and the real and imaginary
components ofyyyt (k) are Gaussian random variables with mean zero. For eachk, the value of〈yyyt (k)∗yyyt (k)〉 can
be calculated analytically as a function ofaaat (0) [10]. The important part of the evolution is forAt(z) > κ, when
〈yyyt (k)∗yyyt (k)〉 grows exponentially fast:

〈yyyt (k)∗yyyt (k)〉 → 2ε̃2 1

κ

√
π

µ
exp

(
2

µ
κ2F

(
aaat (0)

κ

))
, (14)
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where

F(x) = x − 1 − logx. (15)

A spike in the time-series of|bbbt (k)| appears when the exponential grows sufficiently large. The first mode to
grow hask = 1.

We denote the maximum value of|aaat (0)| in a cycle byaaamax. Thus,aaamax is a random variable, whose distribution
is as follows. The modek = 1 dominates the sum in Eq. (12), soaaat (0) = aaamax whenyyyt (0)∗yyyt (0) = µaaat (0). The
maximum of the density ofaaamax is at â − 1a whereâ satisfies [10,11]

κ2F

(
â

κ

)
= µ|logε| + µ

4
log

µ

π
+ 1

2
µ log2Lµâ − 1

2
µ log

(
1 + 1

κ2

)
, (16)

and

1a = 1

2
µ

â

κ(â − κ)
. (17)

We can more explicitly write the maximum of the density as a function ofα. With k = 1 andµ � 1, Eq. (16)
reduces to

âL

2π
− log

(
âL

2π

)
= 1 + α + O(µ). (18)

The width of the distribution is proportional toµ:

〈aaa2
max〉 − 〈aaamax〉2 = π2

6
1a2. (19)

We can explicitly calculate the distribution ofaaamax. Using Eq. (14), we know the probability, as a function ofAt(z),
thatyyyt (0)∗yyyt (0) > µaaat (0). The density ofaaamax is the derivative with respect toAt(z) of this probability. Explicitly,
the density ofuuu defined by

uuu = (â − aaamax)

1a
(20)

is

Ruuu(v) = d

dv
P[uuu < v] = eve−ev

. (21)

Using Eqs. (16)–(21) gives a quantitatively accurate expression for the distribution ofaaamax (Fig. 4). This remains
true whenα is sufficiently small that the dynamics of the fast phase serves only to provide initial conditions for the
slow phase.

Fig. 2 illustrates the increasingly complicated behavior of solutions as a function ofα. A description in terms of a
map of successive turning points ofaaat (0) can be constructed, where the fast phase is also analysed [6,7,10,11]. In the
simplest approximation [6,7,10,11], the fast phase begins ataaamax, the maximum ofaaat (0), and ends ataaat (0) = aaamin

whereaaamax + aaamin = κ. Using this approximation and Eq. (18), the first qualitative change in the dynamics as a
function ofα, to trajectories where alternate turning pointsaaat (0) have opposite signs, is estimated to occur at

α = 1 − log2+ O(µ). (22)

The value ofα for the ‘period-doubling’ transition from Fig. 2(b) to Fig. 2(c) can be estimated similarly. In this
case the bifurcation happens whenaaamax is large enough that the subsequent slow phase begins close toaaat (0) = κ
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Fig. 4.Probability distribution of maxima ofaaat (0). The histogram of turning points obtained from numerical simulation of the SPDEs is compared
with the calculated density (21) (smooth line). The parameters areL = 2π, µ = 0.01, ε = 10−5(α = 0.115).

and is no longer independent of its initial conditions. More accurate approximations can be obtained by relaxing the
assumption thatAt(z) is spatially uniform and by taking into account the possibility that dominant mode among the
pairs(yyyt (k), zzzt (k)) may havek > 1; one obtains a hierarchy of low-order models for convection subject to shear.
The effect of a magnetic field can also be included [4].

For α > 1, solutions of Eq. (4) display noisily-periodic behavior in some windows (Fig. 2(e)), but the typical
picture is one of spatial inhomogeneity with only rare coherent slow phases. The expression (18) gives a maximum
possible value ofaaat (0) that corresponds to the envelope of the points in Fig. 1, but the spatial coherence required
to attain this value becomes rarer asα is increased. The limiting behavior for vanishingly small noise is extremely
irregular.

4. Concluding remarks

Any differential equation modeling a physical system ignores some influences. Normally one considers the
model well chosen if the ignored influences are small, rapidly varying, and have mean zero. Our example is at
first glance disturbing: tiny random influences can have a huge effect. However, noisy-controlled dynamics have a
non-equilibrium steady state with well-defined signatures and for which precise analytical methods with predictive
power exist, once noise is taken into account. One simply needs to remember that the relevant bifurcation parameter
is the logarithm of the noise level and that the larger the noise, the simpler the dynamics.
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